
ECE 150 Fundamentals of Programming

Douglas Wilhelm Harder, M.Math.

Prof. Hiren Patel, Ph.D.

Prof. Werner Dietl, Ph.D.

© 2020 by Douglas Wilhelm Harder and Hiren Patel.

Some rights reserved.

The call stack

2
The call stack

Outline

• In this lesson, we will:

– Describe instructions and constants

– Give an overview of main memory

– Look at how a program is loaded into main memory

• Observe where instructions, constants and local variables are stored

– Learn about the call stack to store local variables

3
The call stack

Main memory

• Up to now, we have authored, compiled and executed programs

– Question: How does this work?

4
The call stack

Example

• What happens to a program when it is compiled?
#include <iostream>

int main();

int main() {

double x{};

std::cout << "Enter a value 'x': ";

std::cin >> x;

double pi{3.1415926535897932};

double result{x - pi};

if (result < 0) {

result = -result;

}

std::cout << "|x - pi| = " << result << std::endl;

return 0;

}

5
The call stack

Example

• A program is converted into a sequence of instructions that the
computer can execute

– These instructions are stored in a file within a file system

• They are often called executable files or executables

– File systems are generally stored in persistent memory

• A hard-disk drive

• A solid-state drive

• Some form of optical memory

– It may also be stored as firmware in flash ROM

– Each instruction has its own address in that memory

6
The call stack

Instructions
Address Instruction (rendered into English)

1954 Assign 'x' the value 0.0

1955 Call routine to print a string at Address 1968

1956 Call routine to input a double, saving the value to 'x'

1957 Assign 'pi' the value at Address 1969

1958 Subtract 'pi' from 'x'

1959 Assign 'result' the previous calculation

1960 If 'result' is not negative, jump to Address 1963

1961 Negate 'result'

1962 Assign 'result' the previous calculation

1963 Call routine to print a string at Address 1970

1964 Call routine to print a double 'x'

1965 Call routine to print an end-of-line character

1966 Set return value to 0

1967 Return

1968 "Enter a value 'x': "

1969 3.1415926535897932

1970 "|x - pi| = "

7
The call stack

Main memory

• When you run a program,

the instructions and constants are loaded into main memory

– Main memory is volatile

• It usually disappears when the computer is turned off

– It is much faster to access values stored in main memory than it is
access anything in persistent memory

– The processor then starts executing one instruction at a time

8
The call stack

Main memory

• In main memory,

we now have

– Instructions

– Constants (literals)

• Question:

Where are the local

variables stored?

1954 Assign 'x' the value 0.0

1955 Call routine to print a string at Address 1968

1956 Call routine to input a double, saving the value to 'x'

1957 Assign 'pi' the value at Address 1969

1958 Subtract 'pi' from 'x'

1959 Assign 'result' the previous calculation

1960 If 'result' is not negative, jump to Address 1963

1961 Negate 'result'

1962 Assign 'result' the previous calculation

1963 Call routine to print a string at Address 1970

1964 Call routine to print a double 'x'

1965 Call routine to print an end-of-line character

1966 Set return value to 0

1967 Exit

1968 "Enter a value 'x': "

1969 3.1415926535897932

1970 "|x - pi| = "

9
The call stack

Local variables

• One idea is to include the memory for the local variables together
with the instructions and constants

– Problem:

• We would have to reserve memory for all local variables even if it is
unlikely that they will ever be used

• We will not be able to perform recursive algorithms

• The most common strategy is to place local variables elsewhere in
memory

– The most preferred place is at the end of main memory

10
The call stack

Local variables

• Thus, our main memory is broken into

three sections

– Instructions

– Constants

– Local variables (the call stack)

• All the memory in between will be used for:

– Function calls

– Requests for additional memory

0 Assign 'x' the value 0.0

1 Call routine to print a string at Address 13

2 Call routine to access a double, saving to 'x'

3 Assign 'pi' the value at Address 14

4 Subtract 'pi' from 'x'

5 Assign 'result' the previous calculation

6 Test if 'result' is not negative, jump to Address 9

7 Negate 'result'

8 Assign 'result' the previous calculation

9 Call routine to print a string at Address 15

10 Call routine to print a double 'x'

11 Call routine to print an end-of-line character

12 Set return value to 0

13 Exit

14 "Enter an integer 'n': "

15 3.1415926535897932

16 "|n - pi| = "

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61 result

62 pi

63 x

⋮

60

61 result

62 pi

63 x

11
The call stack

The purpose of the call stack

• Function management:
Tracks function calls and returns, using a last-in–first-out order

• Local storage:
Stores local variables and parameters for each function call

• Execution order:
Manages the order of function execution and ensures each
function completes before the previous one returns

• Error handling:
Provides stack traces for debugging by showing the sequence of
function calls at the point of error

• Supports recursion:
Handles recursive function calls by managing each call’s state with
separate stack frames.

• Memory management:
Efficiently allocates and reclaims memory for function calls,
preventing leaks.

12
The call stack

Summary

• Following this lesson, you now:

– Know programs are a sequences of instructions built by the compiler

– Understand they must be loaded into main memory to run them

– Know that instructions and constants are stored in separate blocks

– Know that local variables are stored at the other end of memory

• They are stored in what is called the call stack

– Are aware that the remaining memory can also be used by the
running program

13
The call stack

References

[1] https://en.wikipedia.org/wiki/Call_stack

14
The call stack

Acknowledgments

Proof read by Dr. Thomas McConkey and Charlie Liu.

15
The call stack

Colophon

These slides were prepared using the Georgia typeface. Mathematical
equations use Times New Roman, and source code is presented using
Consolas.

The photographs of lilacs in bloom appearing on the title slide and
accenting the top of each other slide were taken at the Royal Botanical
Gardens on May 27, 2018 by Douglas Wilhelm Harder. Please see

https://www.rbg.ca/

for more information.

16
The call stack

Disclaimer

These slides are provided for the ECE 150 Fundamentals of
Programming course taught at the University of Waterloo. The
material in it reflects the authors’ best judgment in light of the
information available to them at the time of preparation. Any reliance
on these course slides by any party for any other purpose are the
responsibility of such parties. The authors accept no responsibility for
damages, if any, suffered by any party as a result of decisions made or
actions based on these course slides for any other purpose than that for
which it was intended.

